
Richard Hancock – i7249671

 0

GAME ENGINE
PROGRAMMING

ASSIGNMENT 2

Implementation Report

Richard Hancock

April 2017

Richard Hancock – i7249671

 1

Table of Contents
Introduction .. 2

UML Diagrams ... 2

Features .. 4

User Guide .. 7

Evaluation ... 8

Conclusions ... 8

Appendices .. 8

Richard Hancock – i7249671

 2

Introduction
For this Assignment, I have focused on developing new and expanding upon existing features in my Game Engine. I primarily focused on Cross Platform, Networking and

Physics.

UML Diagrams

Figure 1 UML Diagram of all Component classes in my Engine currently. (Note: Collider and Sphere Collider are my own physics and are not used anymore)

Richard Hancock – i7249671

 3

Figure 2 UML Diagram of the Debug Drawer which can be used to draw simple
primitives such as lines and points. Bullet can utilize this to display all the physics
data it has available.

Figure 3 UML Diagram showing how the ExpiryTimer is
made up. The expiry time is a simple component that
contains a timer, once that time has finished it will
delete the game object it is attached to. (I use this for
the ships rockets).

Richard Hancock – i7249671

 4

Features
• Cross Platform on Windows, Linux and Mac with a custom python scripted build system

that allows for the easy generation of Makefiles and even fetching of dependencies in some

cases. Adding Mac support was difficult as I don’t have any experience with or own a Mac,

so I had to rent a Mac server, teach myself the operating system and then port the code

over to it. Unfortunately, the Mac server I use is also very slow (~30 mins to build the code)

so I can only barely run the game engine on it at all.

• Cross Platform networking, I have implemented

both WinSock and BSD sockets in the engine and can be accessed by a standardized

interface, with the engine doing all the platform specific networking behind the scenes.

However, I do not currently have a game server component and have been testing the

networking with IRC and web servers. I almost had a system that uploaded user data (logs,

platform specs, general analytics) to a web page, but had to disable it as it needs more work

to be stable.

Figure 4 UML Inheritance diagram showing how the
sockets derive from a common base class

Figure 5 UML Collaboration diagram showing the
Socket interface which is the only part an end user
will interact with.

Richard Hancock – i7249671

 5

• Height Map Loader that can convert a grayscale image into geometry and height data with

the option of texturing. Can scale the map in height or dimensions to increase land size

(without requiring increased height map image resolution).

• Bullet Physics Implementation, I have implemented most of the core functionality of Bullet:

o Triangular Mesh Collision: My Game Model class can be converted straight into a

triangular mesh for bullet to use in collision.

o Collision Callbacks: When a collision occurs, I trigger an onCollision event to the

affected Game Objects and their components.

o Quaternion Rotations: Due to recurring problems with Euler angles I implemented

Bullet’s quaternion class to handle rotations for all objects. (I originally tried to use

GLM but its data did not match bullet’s, thus causing weird behaviour).

Figure 6 Height Map

Richard Hancock – i7249671

 6

o Debug Drawer/Renderer: Bullet provides an interface that if implemented will allow

all physics objects to be displayed on screen as a wireframe, showing how each

collision shape wraps its assigned model. I built this debug drawer to use modern

OpenGL techniques (Rather than ‘glDrawLine’) and to be independent of Bullet so it

could be used to render any primitive data.

Figure 7 Debug Renderer showing all physics objects

Richard Hancock – i7249671

 7

• SkyBoxes and Cube maps, Cube maps have been added on the OpenGL side to allow for 6

textures that make up the faces of a cube. I have mainly implemented these to add a SkyBox

or StarScape Renderer to replace the single plane I used to display the background

previously. Each of the 6 textures is 4096x4096 so displays a lot of detail.

• WebSocket support (Dissertation), Implemented into the engine as part of my dissertation

allows mobile devices to be used as secondary displays and controllers. While the code is

still in the submission I have disabled the feature as it cannot run without a web server

component that I can only host as required.

User Guide
Settings can be changed in the settings file which is stored at:

“C://Users/NAME/AppData/Roaming/RH/Engine”

Once the program has loaded, the ship can be controlled using:

• W – Move forward

• S – Move backwards

• A – Move left

• D – Move right

• Q – Move down

• E – Move right

• Arrow keys – Rotate

• K, L – Roll

Alternatively, the Left analog stick of a connected controller can move the camera in some axis.

Figure 8 Portion of the SkyBox

Richard Hancock – i7249671

 8

Other Controls

• F – Enter planet (Currently only one way, will need to reload game to go back to space).

• B – Drop Bouncy Balls (Only works on planet)

• Spacebar – Fire Rocket (These cause explosions that can propel other objects out of its blast

radius (visible using debug view).

• F1 – Toggle Debug View (Shows all of bullets physics objects) WARNING: Can slow

performance to a crawl during heavy physics.

Evaluation
The code compiles with no warnings (Apart from 3rd party libraries) on level 4 in Visual Studio. It also

compiles with almost no warnings on G++(GCC) and Clang on Ubuntu and Mac OS Sierra. The engine

runs at a reasonable performance on Windows and Linux, however I cannot test Mac’s performance

due to the problems I mentioned above (but it does run).

Conclusions
In conclusion, I would have liked to get more done during this assignment as Bullet delayed me

significantly with its lack of documentation and maintenance. In the future, I would not use Bullet

again, preferring NVidia’s PhysX or my own implementation instead.

I would have also liked to be able to test my engine on Mac more and possibly port it to Emscripten

and Android.

In summary, I am pleased that Bullet’s physics work but I will be looking for alternative physics

libraries in the future that allow easier integration and are actively maintained/documented.

Appendices
In addition to this report I have generated full DoxyGen documentation in both HTML and PDF

formats. I have turned all the UML settings to their highest to provide inheritance, collaboration,

usage and file diagrams.

