

Game Engine Programming
ASSIGNMENT 1

Richard Hancock | BSc Games Programming | 12/12/16

*More than two pages because it’s impossible with UML diagrams that take up a page each
by themselves. I’m within the word count.

PAGE 1

Table of Contents
Introduction .. 2

UML Diagrams .. 2

Features ... 4

User Guide ... 4

Evaluation .. 5

Conclusions ... 5

Appendices ..6

PAGE 2

Introduction
For this assignment I have implemented my own game engine following the basic design
principles of the Mutiny engine. I have tried to focus on the cross platform capabilities as
my primary focus, with input and graphics following closely behind,

UML Diagrams

Figure 1 Component UML Diagram

PAGE 3

My engine features most of the major components needed for the assignment plus a few
extra. Figure 1 shows a UML inheritance diagram showing their basic capabilities.

Figure 2 UML of Resource types

PAGE 4

Figure 2 shows the different type of resource my engine can load and utilize. They are all
loaded into my resource manager as smart pointers to protect from memory leaks and for
convenience of access.

Features
• Supports Linux style operating systems (mainly tested on Debian and Ubuntu).

Only feature not guaranteed to work is controller support as Linux is not very
standardized in this area. I created a python script that generates the Makefile on
Linux platforms.

• Static Platform class that handles all initialization, storage and deletion of SDL,
OpenGL, GLEW and any other libraries. Also features a settings file loader that
loads XML files containing user settings such as resolution, anti-aliasing and
Fullscreen/Borderless/Windowed.

• Fully feature input system that supports all keyboard and mouse operations, plus
supports controllers such as the Xbox 360/One controller. It can handle up to 4
controllers at a time. Also supports controller haptics such as rumble/vibrations
with configurable strength and durations.

• Configurable Shader class that allows uniforms variables to be created and sent to
the graphics card easily. Keeps track of what variables have already been passed to
the graphics card so that it can overwrite the data rather than allocating new
space.

• Supports the loading of complex meshes made up of several sub components and
materials. Currently supports: normal maps, specular maps and standard diffuse
maps/textures. Utilizes Assimp library for complex models, but I have my own OBJ
loader that I use for the simpler meshes like spheres.

• Multiple light support, in the demo I have a directional light and a movable point
light to demonstrate this.

• Can use Sphere vs Sphere collision and AABB vs AABB, technically can also do
Sphere vs AABB but the sphere collider falls back to its AABB component.

User Guide
Settings can be changed in the settings file which is stored at:
“C://Users/NAME/AppData/Roaming/RH/Engine”

Once the program has loaded, the camera can be controlled using:

• W – Move forward
• S – Move backwards
• A – Move left

PAGE 5

• D – Move right
• Q – Move down
• E – Move right
• Arrow keys – Rotate
• K, L – Roll

Alternatively, the Left analog stick of a connected controller can move the camera in some
axis.

• 1 Key or A button – Plays a sound to demonstrate audio capability
• C Key or Y button – Switch between controlling camera and the light emitting

sphere.
• Space Bar or B button – Resets the camera and sphere back to starting positions.

As mentioned above you can switch to controlling the light emitting sphere by pressing
the C Key or Y button, by moving this around you can test that collisions and the lighting
are working. On collision with the other sphere the controller should also trigger a haptic
event (Rumbles).

Evaluation
I have run my program through Valgrind a memory leak detection tool, the results seemed
to show that the only leaks in my program are due to 3rd party libraries such as Assimp and
SDL.
The Engine also compiles with almost no warnings on level 4 strictness, only warns about
not aligning GLM matrices in memory. I have also tested the Engine on Ubuntu where it
runs at nearly the same speed as the Windows version.

Conclusions
One part I would like to improved is the memory management, as some parts of the code
still use raw pointers. Most of these are related to Assimp which threw many errors when I
attempted to use smart pointers as it manages its own memory internally.
Another aspect I would like to improve is the lighting, as while it has fairly complex
elements to it, all of the details are just washed out by the base textures.
I would have also liked to support Emscripten however the amount of changes required to
the current code base would be extreme, so I will investigate this possibility for the next
assignment.

For the next assignment I hope to further refine the component system to be more
convenient to use, as currently declaring one game object and all of its components takes
many lines. I would also like to implement even more detailed lighting and shadows.

PAGE 6

Appendices
In addition to this report I have generated full DoxyGen documentation in both HTML
and PDF formats. I have turned all the UML settings to their highest to provide
inheritance, collaboration, usage and file diagrams.

	Introduction
	UML Diagrams
	Features
	User Guide
	Evaluation
	Conclusions
	Appendices

